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The Lattice Boltzmann Phononic 
Lattice Solid 

Peter Mora i 

I present a Boltzmann lattice gas-like approach for modeling compressional 
waves in an inhomogeneous medium as a first step toward developing a method 
to simulate seismic waves in complex solids. The method is based on modeling 
particles in a discrete lattice with wavelike characteristics of partial reflection 
and transmission when passing between links with different properties as well as 
phononlike interactions (i.e., collisions), with particle speed dependent on link 
properties. In the macroscopic limit, this approach theoretically yields compres- 
sional waves in an inhomogeneous acoustic medium. Numerical experiments 
verify the method and demonstrate its convergence properties. The lattice 
Boltzmann phononic lattice solid could be used to study how seismic wave 
anisotropy and attenuation are related to microfractures, the complex geometry 
of rock matrices, and their couplings to pore fluids. However, additional 
particles related to the two transverse phonons must be incorporated to 
correctly simulate wave phenomena in solids. 

KEY WORDS: Lattice solid; lattice gas; lattice Boltzmann; cellular 
automata; seismic waves; phonons. 

1. I N T R O D U C T I O N  

The lattice gas approach models fluids as a system of idealized gas particles 
that can move and collide on a discrete lattice. At the microscopic scale, 
the lattice gas physics is much simpler than the true physics of gas 
dynamics, yet the correct behavior encompassed by the Navier-Stokes 
equations is seen at the macroscopic scaleJ I) 

I present a first step toward the construction of a model with 
simplified microscopic physics capable of simulating macroscopic wave 
phenomena in complex solids. Ultimately, numerical experiments using 
such an approach could lead to an improved understanding of the how 
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microscopic features and pore fluids in rocks affect seismic wave propaga- 
tion. 

For example, microfractures and grain alignments are known to cause 
seismic anisotropy, ~z3~ although analyses are difficult due to the high level 
of geometric complexity in rocks. 

Another example is the study of attenuation which is thought to be 
related to loss mechanisms such as fluid movements induced by seismic 
waves as they pass through porous rocksJ 4) Several kinds of fluid may be 
present (oil, gas, water,...) whose behavior is nonlinear as well as viscous. 
Consequently, theoretical analyses are difficult due to the nature of the 
pore fluids coupled with the geometric complexity of rock matrices. 

The lattice gas (LG) approach models phenomena including fluid 
flow, (5'6) flow in porous media, ~7) constant-speed sound waves, (8) and 
multiphase fluid behavior. ~9) A critical element required to model complex 
solids with a lattice gas-like method is an approach compatible with the 
LG method capable of simulating elastic vibrations in an inhomogeneous 
solid. This paper focusses on a first step enabling seismic P-waves to be 
modeled in inhomogeneous media using a lattice Boltzmann approach (note 
that earlier attempts at introducing inhomogeneity into both Boolean ~1~ 
and Boltzmann methods (~2) tended to be without theoretical foundation or 
numerical verification). The key differences from the lattice gas method are 
(1) the introduction of a "scattering term" to the Boltzmann transport 
equation to encompass the wave scattering process which occurs at 
boundaries between materials with different properties (a lattice gas has 
only a "collision term"), and (2) the possibility of particle speed varying as 
a function of space. 

The concept from solid-state physics of quanta of elastic vibration 
called phonons with both particle- and wavelike characteristics plays an 
important role, so I name the approach the "phononic lattice solid" (PLS) 
to distinguish it from the lattice gas (LG) approach for modeling fluids. 
I demonstrate theoretically and numerically that the phononie lattice solid 
models compressional waVes in inhomogeneous media in the macroscopic 
limit. 

2. P H O N O N S  

A review of the principal properties of phonons helps to motivate the 
construction of the microphysics of the phononic lattice solid. 

Quanta of elastic vibration called phonons (13'14) exist in infinite 
crystalline solids with a definite energy 

E =  h~ 
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and quasimomentum 

p = h k  

which can be obtained by solving Schr6dinger's equation 

and making use of the quantum condition (commutation relation) 

where carets are used to indicate operators and pi and qi are the momen- 
tum and position of the ith particle. The Hamittonian for a solid has the 
form 

\ 2m ] quqcj' ~3q~ Oqcj~, + ' "  

where the index i is used for the ith atom and the index j denotes the j th  
component of a vector. If the potential function is purely parabolic in the 
above Hamiltonian, phonons are noninteracting and pass through one 
another like classical elastic waves. Real interatomic potentials contain 
cubic and higher order terms, so displacements induced by one phonon are 
seen by other phonons as periodic variations in the medium properties 
(a kind of diffraction grating). Hence, phonons may be scattered from one 
another. This process can be analyzed using the formalism of second quan- 
tization, (15~ which demonstrates that phonon interactions conserve the total 
quasimomentum to within any reciprocal lattice vector b. For example, a 
quartic term in the interatomic potential results in two-phonon interaction 
processes such that the sum of momenta of two incoming phonons equals 
the sum of momenta of two outgoing phonons. Hence, for a so-called 
normal process with b = O, 

(kl + k2)~ftc~ = (k t + k2)bcfore 

Thus, phonons interact in a way that is analogous to collision between 
classical particles. 

There are three types of phonon, one dilational and two transverse, 
denoted the P, S1, and $2, respectively. This paper deals with the dilational 
particle only and focuses on the introduction of inhomogeneity. Future 
models will require transverse particle types to model the quasishear 
seismic waves as well as quasicompressional waves. 

The particlelike property of collision will be combined with wavelike 
scattering behavior at medium boundaries to construct the phononic lattice 
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solid. I make no attempt, or claim, to model phonons in a real solid as 
would be critical if studying the thermal properties of solids. Rather, my 
goal is to construct a simple microscopic world that correctly yields 
macroscopic wave phenomena in inhomogeneous media. 

3. THE LATTICE GAS B O L T Z M A N N  E Q U A T I O N  

A brief review of the lattice Boltzmann lattice gas approach in two 
dimensions lays the ground for the phononic lattice solid. 

Let N~(x, t) represent the number density of gas particles moving in 
direction e =  [1,..., b]. For particles moving with speed c, the Boltzmann 
transport equation is 

ONe+ ON~_dN c 
#t ce~j ~Xj dt (1) 

where dNC/dt is the rate of change of number density in the c~ direction 
resulting from collision processes and e~ is the unit vector pointing in the 
c~direction. In a two-dimensional triangular lattice (i.e., b = 6 ) ,  the unit 
vector e~ is given by 

e~ = (cos([c~ - 1] n/3), s i n ( [ ~ -  1] ~/3]) (2) 

Equation (1) can be integrated using the first-order finite-difference (FD) 
equation 

N~(x, t + At)= N~(x, t)-s[N~(x, t ) -  N~(x -  dx~, t)] 

+ jNC(x ,  t) (3) 

where s ~< 1 is the dimensionless particle speed measured as lattice spacings 
per time step, namely 

At 
s = c - -  (4) 

Ax 

and Ax~ is the vector between lattice sites in the ~ direction. 
Equation (3) states that the number density of particles at the next 

time step N~(x,t+At) is the present number density N~(x,t)  minus 
the fraction sN~(x, t) departing from the lattice site, plus an amount 
sN~(x - Axe, t) to account for particles arriving from the adjacent site, plus 
a term c AN~ (x, t) to include the effect of collisions. 

For a classical lattice gas the only nonzero dimensionless particle 
speed is unity, so Eq. (3) simplifies to 

N~(x, t+At)=N~(x--Ax~, t )+  JNC(x,  t) (5) 



The Lattice Bol tzmann Phonon ic  Lattice Solid 595 

(see also ref. 16). In this case, the time and space finite-difference errors 
cancel one another and the FD solution is exact. 

By applying the Chapman-Enskog approach of expanding the N~ in 
terms of the macroscopic fluid velocity vi and making use of conservation 
of mass and momentum, the form of the Navier-Stokes equations can be 
obtained in the macroscopic limit. (1~ The viscosity depends on the details 
of the collisions and has been analyzed for both Fermi-like lattice gases (17) 
and Bose-like lattice gases. (18) The fermionic collision term has the form 

C t AN~ = Z (S~-  S~) A(S-~ S') l~ N~e(1 - N~) (1 sr 
S,S'  fl 

(6) 

where the Boolean variables S~ and S'~ define input and output states, and 
A(S-~ S') is the transition probability from input state S to output state 
S'. Products with N~ evaluate the collision probability, while products with 
( 1 - N ~ )  compute the probability that the output state is not already 
occupied and is hence allowed (i.e., fermions obey the Pauli exclusion 
principle that only one particle is allowed in the same state). 

For example, two incoming particles in the 1 and 4 directions 
represented as input state S =  [1, 0, 0, 1, 0, 0] may collide yielding two out- 
going particles in the 2 and 5 directions represented as output state 
S ' =  [0, 1, 0, 0, 1, 0-]. In the FHP-I  lattice gas, the corresponding transition 
probability A(S-~S')  is 0.5, leading to a term in the sum 52s, s, of form 
AN~ = [ - 1, 1, 0, - 1, 1, 0] x 0.5 x N1N4(1 - N2)(1 - Ns). 

4. THE LATTICE SOLID BOLTZMANN EQUATION 

Consider wavelike particles representing elastic vibrations in a solid 
rather than classical particles of a lattice gas. The speed of elastic vibrations 
in a lattice depends on the elastic properties of the links (stiffness and 
density), which are allowed to be space and direction dependent. Therefore, 
the dimensionless speed must now be written as 

A t  
s~(x) = c~(x) A--~ (7) 

A vibration passing from a link with one property to a link with a different 
property is partially reflected and transmitted. The reflection and transmis- 
sion coefficients for a particle moving in the ~ direction are denoted by 
R~(x) and T~(x). Vibrations are allowed to undergo phononlike inter- 
actions such that the number of particles and the quasimomentum are 
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conserved (i.e., they undergo collisions like classical particles). The number 
density therefore obeys the lattice Boltzmann equation given by 

N~(x, t + At) = N~(x, t) - s~(x)[N~(x, t) - T~(x) N~(x - Axe, t) 

- R~+b/z(X) N~+b/2(x, t)] + ANts(x, t) (8) 

The interaction term denoted by AN t is the same as the collision term for 
the Bose lattice gas AN c, in keeping with the wavelike character of the 
particles. It has the form (18) 

AN~ = ~ (S" - S~) A(S  ~ S') I]  X~(1 + u~)S'~ (9) 
S , S '  13 

The interpretation of Eq. (8) is similar to that of Eq. (3) except 
that the number of particles arriving from an adjacent site is modified by 
the transmission coefficient and an amount s~R~+b/2N~+b/2 is added to 
account for reflected particles. I have identified N~(x, t) with the number 
density of particles at time t leaving the lattice site at location x. This 
explains why the transmission coefficient T~(x) is present rather than 
T ~ ( x  - ~x~). 

Reflection and transmission coeff• for phonons are related 
through 1 = R~ + T~ (i.e., conservation of energy). However, the pressure of 
an inhomogeneous solid in equilibrium is constant, whereas the energy 
density is not. Therefore, I have chosen to deal with particles that carry a 
unit of pressure whose equilibrium distribution has the lattice gas 
form, ~,~8) namely 

t =-~ 1 + ~7 v~e~ + G(p) Q~uv~vj + O(v 3) (10) 

where p is the particle density, vi is the macroscopic velocity of the solid, 
and D = 2 is the number of space dimensions. This choice allows lattice gas 
theory to be applied to the phononic lattice solid model with only minor 
extensions. I label the pressure particles pressions. 

Reflection and transmission coefficients for pressions are related 
through 

I+R~=T~ (11) 

(i.e., continuity of pressure) with the reflection coefficient given by 

Z(x + Ax,/2) -- Z(x - Axe/2) 
R~(x) - (12) 

Z(x + 3x~/2) + Z(x - Axe/2) 
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where 

Z=pc (13) 

is the acoustic impedence and p is the density of the medium. 
The lattice solid Boltzmann equation can now be written as 

N~(x, t + At )= N~(x, t ) -  s~(x)[N~(x, t ) -  N ~ ( x -  Ax~, t)] 

+ AN'~(x, t) + AXS(x,  t) (14) 

where 

AN~S(x, t )=  s~(x)R~(x)[N~(x, t)--N~+b/2(x, t)] (15) 

is called the scattering term and accounts for the wave scattering processes. 
Note that the relation R~+b/2 = --R~ was used to obtain this expression. 
Higher-order terms were dropped from the expansion N~(x-Ax~,  t )=  
N~(x, t )+ . . . in passing from Eq. (8) to (15) to avoid errors from 
appearing in Eq. (21). 

Hence, the phononic lattice solid Boltzmann equation (14) is the 
same as the lattice gas Boltzmann equation (3) except for the additional 
term A N  s. 

The analysis is henceforth restricted to the case of inhomogeneous 
media with no intrinsic anisotropy (no crystal anisotropy) so ca(x ) = c(x). 

5. T H E  LATTICE S O L I D  M A C R O S C O P I C  L I M I T  

To first order, the lattice solid Boltzmann equation given by (14) 
corresponds to the Boltzmann equation 

~N~ ON~ dN~ dN s 
c~--~ + c ~j c~ x j d t I- d~- (16) 

where the term dNS/dt is the rate of change of the number density due to 
scattering processes (partial reflection and transmission). 

The macroscopic pressure P and velocity vi are defined by 

and 

N~ P - Z  (17) 

N~e~i (18) 
vi=-~, Z 

cr 
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The assumed phononic behavior of particles (i.e., energy and 
quasimomentum conservation during interaction processes) implies the 
following constraints on the interaction term: 

and 

dNI~=o (19) 
dt 

o~ 

dNl 
2 T e~ = 0 (20) 

c~ 

which are the same as the conservation constraints for classical particles 
undergoing collisions. 

Use is also made of the relations 

dNS (N~e~iOZ) (21) 
p &# 

and 
dN s 

d-~- e~j = O (22) 

which can be verified by substituting the differential version of the 
reflection coefficient formula (12), 

Z(x + dx~/2) - Z(x - dx~/2) dx 8Z 
R~ - Z(x + dx~/2) + Z(x - dx~/2) * 2Z 8~j e~j (23) 

into the definition of the scattering term given by (15) and summing over 
direction c~. 

Summing the Boltzmann transport equation given by (16) over 
direction c~ and making use of the definitions (17) and (18) as well as the 
relations (19) and (21) yields the macroscopic equation 

c~P t- pc2 63t)j = 0 (24) 
0t D c3xj 

which can be integrated to provide the form of the classical relationship 
between pressure P and displacement uj, 

P= Po pc 2 c?uj Ouj 
D c?X/ P o -  K ~ x  j (25) 

where K =  pcZ/D is the bulk modulus of the medium. 
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The transport equation (16) multiplied by % and summed over 
yields a second equation. By applying the definition (18) and the relations 
(20) and (22), we can write the second equation as 

p ~ c?xs  N~e~ie~s = O (26) 

Expanding N~ in terms of the macroscopic velocity (Chapman Enskog 
method) in the standard way (1) [see Eq. (10)] and using the moment 
relation 

e~ie~j = bS ij/D (27) 

and definition (17), we can simplify (26) to yield 

~?v i • P 
P ~ -  + ~x~ = O(v2) (28) 

By combining the macroscopic equations given by (24) and (28), one 
obtains [to O(v:)]  the wave equation for inhomogeneous acoustic media 

02vi ~ 0v~ 
p ~t 2 c?xK'V-'=Oexs (29) 

Hence, one sees that the Boltzmann transport equation (16) yields sound 
waves in an inhomogeneous medium with speed C related to the particle 
speed c through 

c(x) 
C(x)  = (30) 

In contrast, recall that a lattice gas yields constant-speed sound waves in 
a gas (i.e., waves in a homogeneous medium). 

The analysis has aimed at including the effect of the scattering term 
(15). In order to correctly capture viscosity, one would require the v 2 terms 
in Eq. (28) which derive from the v 2 terms in the equilibrium distribution 
(10). However, a complete analysis is complicated by the presence of finite- 
difference errors when s < 1. In the special case of s = 1, Higuera's result for 
viscosity is applicable. (181 In general, the viscosity is expected to be 
isotropic in the macroscopic limit where the FD errors vanish. (19'2~ 
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6. F IN ITE-DIFFERENCE S C H E M E  

The time evolution process specified by the lattice solid equation (14) 
consists of propagation, scattering, and interaction of the number densities 
N~(x, t). Propagation is analogous to the movement step in a lattice gas 
and can be achieved by using the first-order finite-difference scheme 

N~(x, t*)=N~(x,  t)-s(x)[N~(x, t ) -No(x -Axe ,  t)] (31) 

The scattering step consists of adding the scattering term 

N~(x, t**) = N~(x, t*) + dNS(x, t*) (32) 

where the scattering term AN s is specified by Eq. (15). The final step of 
interaction completes the time evolution process 

N~(x, t+At)=N~(x, t**)+ 1 dN~(x, t**) (33) 

where the interaction term is specified by Eq. (9). The transition 
probabilities depend on the choice of collision rules. Particles represent 
vibrational quanta that cannot be brought to rest, so the FHP-I rules (i) are 
appropriate. 

The entire time evolution process for the first-order lattice Boltzmann 
phonomic lattice solid consists of applying the three steps (31), (32), 
and (33). 

For s ~< 1, the lattice solid transport equation (31) represents a stable 
first-order finite-difference scheme to solve the Boltzmann transport 
equation 

(~N~ (~N. 
~----~-+ c~j --~xj = 0 (34) 

If s = 1, the time errors exactly cancel the space errors and the first-order 
finite-difference scheme yields the exact solution. However, if s < 1, errors 
of order O(Ax, At) lead to numerical attenuation and dispersion of the 
solution for N~. 

For this reason, it is preferable to use a more rapidly converging 
second-order finite-difference scheme to perform the propagation step 

s 
N~(x, t* )=  N~(x, t ) - ~  (x)[N~(x + Axe, t ) - N ~ ( x - A x e ,  t)] 

s 2 
+~-(x)[N~(x + Axe, t ) -2N~(x,  t )+N~(x-Ax, ,  t)] (35) 
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This scheme corresponds to the predictor-corrector or Lax-Wendroff 
method (21/ of the computational fluid mechanics literature. The second- 
order scheme is derived by truncating the Taylor series 

N~(t+At)=N=(t)+At~3N~ot (t)+-~.At2~32N~(t)+~t ~ ... (36) 

and expressing the time derivatives in terms of space derivatives by making 
use of the Boltzmann transport equation given by (34). Spatial derivatives 
are then calculated using centered finite-difference approximations. 

The second-order scheme for propagation (35) followed by- the 
scattering step (32) and interaction step (33) is referred to as the second- 
order lattice Boltzmann phononic lattice solid or second-order PLS. 

For homogeneous media with s = 1, the scattering term AN s vanishes 
and the phononic lattice solid (to both first and second order) reduces to 
the classical lattice Boltzmann finite-difference equation for Bose fluid 
dynamics, ~18~ namely 

N~(x, t + At)= N ~ ( x -  Ax~, t) + AN~(x, t) (37) 

7. NUMERICAL EXPERIMENTS 

Numerical experiments verify the phononic lattice solid (PLS) theory, 
which predicts isotropic P-waves in inhomogeneous media at the macro- 
scopic limit. The tests demonstrate that the expected phenomena such as 
the reflected, transmitted, and conical waves are modeled by the PLS and 
that the solution converges. 

Calculations were performed on a two-dimensional triangular lattice 
with the 1 and 4 directions aligned with the x axis [Eq. (2)] and using 
circular boundary conditions. The fully nonlinear collision operator with 
FHP-I rules was applied, but without triple collisions, to increase com- 
puting speed. 

A scaled depth variable z' defined so that its integral values match 
those of lattice directions 2 and 3, 

z' = z/cos(Tr/3 ) 
is displayed on plots. 

8. WAVES IN I N H O M O G E N E O U S  M E D I A  

8.1. Two-Layer Model 

Figure 1 depicts a snapshot of the vertical component of displacement 
computed using the second-order PLS at time step t = 350 in a 500 x 400 
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grid. The medium consists of two horizontal layers whose interface was at 
z' =200. The upper-layer particle speed was cl =0.5 and the lower-layer 
particle speed was c = 1.0 with A t  = A x  -- 1. A compressional source with a 
first-derivative Gaussian time history located at (x, z') = (250, 170) excited 
waves with approximately 24 gridpoints per wavelength in the upper layer. 

From top to bottom, the acoustic waves can be identified as follows: 

�9 The upgoing direct wave in the upper layer at (x, z') ~ (250, 70) 

�9 The upgoing reflected wave at (x, z ' ) ~  (250, 120) 

�9 The conical (refracted) wave at (x ,z ' )~(120,  180) and 
(x, z') ~ (380, 180) 

�9 The downgoing transmitted wave at (x, z') ~ (250, 340) 

For comparison, a simulation was made with the same model and 
source using a classical explicit second-order finite-difference (FD) scheme 
to solve the acoustic wave equation for inhomogeneous media. The FD 
result shown in Fig. 2 appears to be identical to the PLS result except for 
a perceptible level of background in the PLS solution. The background 
noise is present because the number density perturbations induced by the 
source were small (~0.001) relative to the mean number density d =  0.455, 
thereby decreasing the effective precision of the PLS calculations. 

X 

100 200 300 400  500 
I i 

0 
0 

Fig. 1. Snapshot  of the vertical component  of displacement at time step t = 350 due to a 
compressional source at (250, 170) computed using the phononic lattice solid approach. The 
model consists of two horizontal layers with cl = 0.5 and c2 = 1.0. 
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The finite-difference solution was subtracted from the lattice solid 
solution (Fig. 3) to highlight differences. These differences disappear in the 
macroscopic limit, where the lattice solid and finite-difference solutions 
converge to one another, as demonstrated in the following section. 

8,2. Convergence 

In this section, I study how the PLS solution converges to the classical 
FD solution, which is known to converge to the physical solution. Simula- 
tions were performed with the two approaches at various grid spacings 
relative to reference spacings AXref = 1 and Atref = 1 while fixing the particle 
speeds and source frequency in physical units (i.e., At/Atref= Ax/Axrer and 

f~ . . . . .  = const). For each grid spacing, the error between the two solutions 
is graphed to provide the rate of convergence. 

Calculations are made in a two-horizontal-layer model with cl = 0.5 
and c2 = 1.0 and interface depth z' =0.55Zmax. A horizontal plane-wave 
compressional source with a first-derivative Gaussian time history was 
initiated at time t = 0 and depth z' = 0.40z'ax. At the reference grid spacing, 
there are approximately six gridpoints per wavelength in the upper 
(c1=0.5) layer. Note that although the calculations were made in two 
dimensions, the problem has one-dimensional symmetry and hence the 
results will be displayed as one-dimensional plots. 

0 I00 200 300 400 500 
I I i 

X 

Fig. 2. Snapshot of the vertical component of displacement computed with the classical 
finite-difference method. The model, source, and plot parameters were identical to those used 
for the phononic lattice solid result. 



X 

0 100 200 300 400 500 
I I I i 

"N 

604 M o r a  

Fig. 3. The difference between the lattice solid and the finite-difference results ( L S - F D )  for 
the two-layer model. 

Figure 4 shows a typical run made at 60 gridpoints per wavelength 
(i.e., Ax = AXref/10). 

The vertical component of displacement at time t = 0.Stmax is graphed 
for ten grid spacings for the PLS and FD approaches in Fig. 5. The two 
solutions are similar when there are at least 24 gridpoints per wavelength. 
The differences, evident at larger grid spacings, are the result of finite-lattice 
effects and the characteristics of the Boltzmann and classical FD schemes. 

O 
O 

o .  

200 400 600 800 1000 

Z'  

Fig. 4. Resul ts  of a typical lattice solid run used for the convergence calculations 
t a x  = zJxr~r/lO =. 60 gridpoints per wavelength in the upper layer). The model is two horizon- 
tal layers with Cl = 0.5 and c2 = 1.0 and interface depth z ' =  0.55Zma X. A plane wave source at 
depth z ' =  0.40Zma x was initiated at time t = 0. 
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(a) 

0 200  400  600  800  1000 

Z' 

(b) 

2 

,-4 

0 2 0 0  400  600  800  

Z'  

1000 

(c) 
O 

0 200 400 600 800 1000 

Z' 

Fig. 5. The vertical component of displacement at time t =0.8tma x for ten simulations using 
the one-dimensional model and plane wave source with AXrer/Zlx = 1/zIx = [1,..., 10]. (a) The 
second-order phononic lattice solid, (b) the classical second-order finite-difference method to 
solve the acoustic wave equation, and (c) the difference between the two solutions, L S - F D .  
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)4 
C~ 

~ m  

200 400 600 800 1000 

Z' 

Fig. 6. The vertical component of displacement at time t = 0.Str~a~ for ten simulations using 
the one-dimensional model and plane wave source with Axref/Ax = 1lAx = [1,..., 10] for the 
first-order phononic lattice solid, demonstrating its slower convergence. 

The maximum error between the PLS and FD solutions at 24 gridpoints 
per wavelength is approximately 25%, as was the case in the two- 
dimensional example of Fig. 3. The error decreases to an acceptable level 
when there are 60 or more gridpoints per wavelength. 

Runs were also performed using the first-order PLS approach to 
demonstrate its slower convergence relative to the second-order PLS 
(Fig. 6). 

C o n v e r g e n c e :  LS - > FD 

0 

0 0.5 
Dx 

Fig. 7. The error between the second-order phononic lattice solid and finite-difference 
solutions. Near the origin, the error curve apparently tends to a parabola (i.e., E oc Ax2). 
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C o n v e r g e n c e :  LS - > FD 

o 

~ o "  
~O 

0:5 i 
Dx 

Fig. 8. The square root of the error between the second-order phononic lattice solid and 
finite-difference solutions. For small grid spacings (i.e., Axe  [0.1, 0.33] or 18-60 gridpoints 
per wavelength), the error curve is linear. Hence, E oc Ax a, as expected. The error is nonlinear 
for larger spacings because the high-order error terms (Ax 3, etc.) are significant. For small 
spacing (Ax <0.1) the error is also nonlinear because of the finite computer precision which 
was responsible for the random noise evident in the two-dimensional snapshot. 

Finally, the error between the two solutions is graphed as a function 
of the grid spacing, where the error is defined in the L2 norm as 

e=ZY  [u)S(z ', ', t)] 2 
t z '  

The second-order PLS and FD solutions should converge to one another 
as Ax2, whereas the first-order PLS solution should converge to the 
second-order finite-difference solution as Ax. This is verified in Figs. 7-9. 

. ~ C ~  1s t  o r d e r  LS - > FD 

113 

O 

o 0'.5 i 
Dx 

Fig. 9. The error between the first-order phononic lattice solid and second-order finite- 
difference solutions. Near the origin, the error curve seems to approach a line, so E ocAx, as 

expected. 
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9. CONCLUSIONS 

An approach named the one-particle lattice Boltzmann phononic lat- 
tice solid (PLS) is developed to model seismic P-waves in inhomogeneous 
media at the macroscopic scale. It is similar to the lattice Boltzmann lattice 
gas method except that particle speed may vary in space and an additional 
term is added to the Boltzmann equation to include wave scattering pro- 
cesses. A theoretical prediction that pressure waves in an inhomogeneous 
medium are obtained at the macroscopic scale is verified numerically. The 
convergence rate is strongly dependent on the finite-difference scheme 
employed to solve the Boltzmann equation. The second-order PLS requires 
approximately 60 gridpoints per wavelength to obtain precise solutions. 
Ultimately, this approach could be used to study how seismic waves are 
affected by complex solids. However, the inclusion of additional particles 
related to the two shear phonons is required to model realistic solids which 
support shear waves. 
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